Two researchers in white coats stand at a lab table reviewing notes.
Two researchers in white coats stand at a lab table reviewing notes.

生物化学与分子生物学 Committee Faculty

BMB委员会成员积极参与代表不同观点的研究项目. Active student participation is important to their work, 过去的研究学生是许多学术出版物的共同作者,并在国内和国际科学会议上发表了演讲. 学生 can also work with a variety of other faculty members from allied departments. Current research topics include: the roles of membrane proteins in the regulation of microbial cell growth; design of computer algorithms for analysis of gene and protein structure; mechanisms of gene regulation in animal cells and microorganisms; mechanisms of pathogenesis in herpes viruses; mechanisms of ion channel localization in synaptic neurons; cell cycle regulation in yeast and cancer cells; mechanisms of root gravitropism; identification of bio-active compounds in nature; and computational design of protein-binding drugs.

One of the agriculturally significant aspects of plant growth is seed size. This is largely determined by the development of the seed endosperm. Dr. Fitz Gerald′s work focuses on the Arabidopsis gene AtFH5, a formin involved in the development of the posterior endosperm. 利用分子生物学的结合, 遗传学和显微镜学, 他的目标是了解AtFH5在胚乳发育中的作用以及调节AtFH5表达的途径. Interestingly, after fertilization AtFH5 is expressed only from the maternal genome. Paternal silencing is regulated by a homologue of the animal Polycomb group complex. In animals, Polycomb complexes maintain cell identity during development. In Arabidopsis, is Polycomb maintaining male and female identity of the parental genomes? 正在进行的项目包括AtFH5表达改变的突变植物的检测和AtFH5相互作用蛋白的分子筛选. 更多关于Dr. 菲茨杰拉德的研究

To survive within host organisms and a wide variety of external environments, pathogenic bacteria have evolved flexible metabolic pathways and stress response systems.  弗劳利实验室研究生理, 鼠伤寒沙门菌对活性氧和活性氮如过氧化氢和一氧化氮的转录和生化反应.  这些宿主产生的化学防御抑制了许多关键酶的功能,从而生存, 细菌必须适应使用替代酶和途径以及修复发生的损伤.  该实验室目前的重点是通过研究细菌锰和铜转运蛋白的表达和功能,了解一氧化氮应激如何影响金属稳态和含金属酶的功能.

Dr. Hill’s research deals with the genetic determinants of growth and division in fungal cells.  特别感兴趣的领域是鉴定参与在分裂位点的肌动球蛋白环的构建和收缩的蛋白质,以及在细胞中靶向蛋白质到其作用位点的分子基础.  与博士合作. Loretta Jackson-Hayes (Department of 化学), 本实验室正在生成和表征丝状真菌细粒曲霉的突变菌株,这些菌株在细胞生长或分裂方面存在缺陷, which is providing information on the mechanisms underlying these processes.  在目前正在研究的基因中, 是肌动蛋白, II型肌凝蛋白, 蛋白激酶C, 以及一种真菌IQGAP蛋白.  Other recently published work has dealt with proteins in the fungal Golgi apparatus, which are important to protein glycosylation and to cell morphogenesis.

杰克逊-海斯实验室的研究重点是研究真核生物基因表达的调控机制, focusing on genes that are involved in fungal cell wall metabolism.  真菌细胞壁, which is composed of polysaccharides and glycoproteins, 是真菌生长和代谢所必需的,是抗真菌药物的极佳靶点.  我们已经确定了几个在丝状真菌细粒曲霉细胞壁代谢中起特定作用的基因,包括已经发现参与酵母建立和维持细胞壁完整性的同源基因和其他一些以前未被表征的基因.  实验正在进行,以调查这些基因的信息产生的调节, 观察这些蛋白在真菌发育不同阶段的细胞定位, and to learn more about the specific role of each of them in cell wall metabolism.

The growth and division of eukaryotic cells is a highly regulated process. 对成功的分裂至关重要的各种事件必须按适当的顺序进行, 在适当的时候, 在合适的位置. 这一系列协调的事件被称为“细胞分裂周期”或“细胞周期”。. 细胞周期的成功调控对单细胞和多细胞生物(从出芽酵母到人类)的生存至关重要. 泰尔). Errors in this process usually result in cell death, and at times trigger the accumulation of oncogenic properties, 最终导致癌症. 在她的实验室里. Miller studies regulatory proteins called cyclins that trigger coordinated cell division. Dr. Miller′s lab uses the model system Saccharomyces cerevisiae to carry out genetic, 基因组, 以及细胞周期蛋白功能的生化检测. 

彼得森实验室的研究采用跨学科的方法,利用合成有机化学的工具来理解重要的生物过程, 化学生物学, 生物化学与分子生物学. 我们实验室目前正在进行两个项目:1)研究硫转移酶选择性的底物, 在许多内源性分子(包括神经递质和激素)的调节和活动中起关键作用的一类酶, 还有外源性药物, and 2) probing the active site requirements of LpxC, an enzyme involved in the biosynthesis of Lipid A, an integral component of Gram-negative bacteria cell walls.

一张带有和平号实验室字样的图片Dr. Shana斯托达德
Dr. Stoddard’s research focuses on three aims: (1.) Improving patient outcomes with autoimmune disorders, in particular idiopathic membranous nephritis (IMN), through development of auto-antibody-specific inhibitors, 抗原特异的治疗方法, as well as novel methods for development of antigen specific therapies, (2.) design of novel cancer therapeutics targeting histone deacetylase isozymes, and (3.) understanding the structure and function of antigens involved in autoimmune disorders.  在分子免疫治疗研究(MIR)实验室,我们利用生物化学中广泛的计算和实验研究技术来实现这些目标, 药物设计, 和免疫化学.

Dr. 惠勒的研究是由这样一个问题驱动的:具有相同基因组的细胞如何保持如此不同的基因表达模式. 在多细胞生物中, cell types with different functions have distinct patterns of gene expression. 值得注意的是, cells maintain these patterns even after cell division, 这表明存在一种可遗传的信号,将基因表达信息传递给后代的细胞. 一个候选信号是染色质. The type of chromatin into which DNA is packaged can control gene expression and, 如果继承, could allow cells to maintain appropriate patterns of gene expression. 此前,博士. 惠勒证明了异染色质, a type of chromatin that represses gene expression, 是否可以在分裂酵母的细胞分裂过程中遗传. 这项工作表明,异染色质可能在基因相同的细胞中维持不同的基因表达模式中起重要作用. 惠勒实验室未来的工作将集中于阐明通过细胞分裂传递异染色质的机制. Dr. Wheeler is looking forward working with Rhodes students interested in genetics, 分子生物学, 基因组学, 表观遗传学, 和生物信息学.